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1 Introduction 

In recent years subdivision methods have been successfully 
applied to the multi-resolution representation and compression of 
surface meshes. Unfortunately their use in the volumetric case has 
remained impractical because of the use of tensor-product 
generalizations that induce an excessive growth of the mesh size 
before sufficient number is preformed. This technical sketch 
presents a new subdivision technique that refines volumetric (and 
higher-dimensional) meshes at the same rate of surface meshes. 
The scheme builds adaptive refinements of a mesh without using 
special decompositions of the cells connecting different levels of 
resolution. Lower dimensional “sharp” features are also handled 
directly in a natural way. The averaging rules allow to reproduce 
the same smoothness of the two best known previous tensor-
product refinement methods [Bajaj et al. 2001;MacCracken and 
Joy 1996]. 

2 Slow Growing Volumetric Subdivision 

The volumetric subdivision is a 
generalization of the 4-8 surface 
subdivision scheme introduced recently 
in [Velho and Zorin 2001]. 
In the 3D case we organize each level 
of subdivision in four passes, from 0 to 
3, where pass 3 of level l is coincident 
with pass 0 of level l+1 as shown in 
the figure on the right.  
From pass 0 to pass 1. For each cell c of the input mesh, a new 

vertex p is inserted at its center. The cell c is partitioned in 
pyramids by connecting p to each facet of c. Pairs of pyramids 
with the same base facet f are merged together into a cell F. 

From pass 1 to pass 2. For each facet f of the base mesh, a new 
vertex q is inserted at its center. The cell F containing f is 
divided in pyramids by connecting q to each facet of F. Groups 
of pyramids sharing a base edge e are merged into a cell E. 

From pass 2 to pass 3. For each edge e of the base mesh, a new 
vertex r is inserted at its center. The cell E containing e is 
partitioned in pyramids by connecting r to each facet of E. 
Groups of pyramids contained in the same base cell c and 
incident to the base vertex v are merged into a single cell.  

This subdivision in four passes refines gradually a mesh by 
decomposing first its cells, then its facets and finally its edges. A 
unified solution for boundary cases, for sharp features and for 
adaptive refinements, is obtained simply 
by skipping the merging stages. For 
example if f is a boundary facet there is 
only one pyramid with base f (the cell F 
will have f on its boundary). Similarly, if 
one refines only one of two cells adjacent 
on f, there is only one pyramid with base f 
and the resulting mesh has no hanging 
node. Therefore, adaptive refinements (see 
figure on the right) do not require special 

treatment. The figure on 
the right shows the 
refinement of a cube, 
where the four top 
vertices (yellow) are four 
sharp 0-fieatures, while 
the bottom edges (red) 
form a sharp 1-feature. Note that the base mesh is not required to 
have hexahedral cells. For example, cells like the dodecahedron 
below are subdivided directly. 

 
The figure below shows the mesh constructed for a mechanical 
piece. (a) is the base mesh and (b) the mesh after six refinements. 
(c-h) are the intermediate steps of the refinement (bottom part of 
the object). Note that a tensor-product scheme would introduce 
the same number of vertices in just two refinements, requiring 
usually more vertices to achieve the same smoothness. 

In conclusion the slow growing 
subdivision is a general tool that 
allows the practical use of 
subdivision methods in the 
volumetric case, extends to 
higer dimensions and admits 
base meshes that are virtaully 
unrestricted (e.g. non-mifold 
features as in the right figure). 

Bibliography 

Bajaj, C.L., Warren, J., AND Xu, G. 2001. A smooth subdivision 
scheme for hexaedral meshes. Submitted to “The Visual 
Computer”. TR-01-05, UT at Austin, April.  

MacCracken R., AND Joy, K.I. 1996. Free-form deformations with 
lattices of arbitrary topology. In Computer Graphics 
(SIGGRAPH'96), pages 181--188. 

Velho, L., AND Zorin, D. 2001. 4-8 subdivision. Computer Aided 
Geometric Design, volume 18, Issue 5, pp 397-427. 

(b)

(c) (d) (e)

(f) (g) (h)(a)

(pass0) (pass1)

(pass3)(pass2)




